Publication

2025

  • Liu, X., Orenday Tapia, L., Deme, J.C., Lea, S.M., and Berks, B.C. (2025) A new paradigm for outer membrane protein biogenesis in the Bacteroidota. Nature doi:10.1038/s41586-025-09532-8. Online ahead of print. PMID: 41034578
  • Chen, N., Bukys, A., Lundgren, C.A.K., Deme, J.C., El Sayyed, H., Kapanidis, A.N., Lea, S.M., and Berks, B.C. (2025) Structure of the conjugation surface exclusion protein TraT. Communications Biology in the press. bioRxiv  https://doi.org/10.1101/2025.05.27.656304
  • Liu, X., Avramova, M., Deme, J.C., Jones, R.L., Lundgren, C.A.K., Lea, S.M., and Berks, B.C. (2025) A shared mechanism for Bacteroidota protein transport and gliding motility. Nature Communications in the press. bioRxiv 12/3/25 doi: https://doi.org/10.1101/2025.03.12.642685
  • Deme, J.C., Bryant, O.J., Batista, M.R.B., Stansfeld, P.J., Berks, B.C., and Lea, S.M. (2025) Structure and substrate recognition by the Twin-arginine translocation (Tat) pathway core complex. bioRxiv doi: https://doi.org/10.1101/2025.09.18.677151

2024-2011

  • Lauber, F., Deme, J.C., Liu, X., Kjær, A., Miller, H.L., Alcock, F., Lea, S.M., Berks, B.C.  (2024) Structural insights into the mechanism of protein transport by the Type 9 Secretion System translocon. Nature Microbiology 9: 1089-1102. doi: 10.1038/s41564-024-01644-7. PMID: 38538833
  • Hickman, S.J., Miller, H.L., Bukys, A., Kapanidis, A., and Berks, B.C. (2024) Aberrant topologies of bacterial membrane proteins revealed by high sensitivity fluorescence labelling. J Mol Biol 436: 168368. doi: 10.1016/j.jmb.2023.168368. PMID: 37977298
  • Alcock, F., and Berks, B.C. (2022) New insights into the Tat protein transport cycle from characterising the assembled Tat translocon. Mol Microbiol 118: 637-651. doi: 10.1111/mmi.14984. PMID: 36151601
  • Hennell James, R., Deme, J.C., Hunter, A., Berks. B.C., and Lea, S.M. (2022) Structures of the Type IX secretion/gliding motility motor from across the phylum Bacteroidetes. mBio 13: e0026722. doi: 10.1128/mbio.00267-22.
  • Hennell James, R. et al. Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat. Microbiol. 6, 221–233 (2021).
  • Silale, A., Lea, S. M. & Berks, B. C. The DNA transporter ComEC has metaldependent nuclease activity that is important for natural transformation. Mol. Microbiol. mmi.14720 (2021). 
  • Deme, J. C. et al. Structures of the stator complex that drives rotation of the bacterial flagellum. Nat. Microbiol. 5, 1553–1564 (2020).
  • Wojnowska, M., Gault, J., Yong, S. C., Robinson, C. V & Berks, B. C. Precursor-Receptor interactions in the twin arginine protein transport pathway probed with a new receptor complex preparation. Biochemistry 57, 1663–1671 (2018).
  • Lauber, F., Deme, J. C., Lea, S. M. & Berks, B. C. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 564, 77–82 (2018).
  • Huang, Q. et al. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Proc. Natl. Acad. Sci. 114, E1958–E1967 (2017).
  • Grabarczyk, D. B. & Berks, B. C. Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ. PLoS One 12, e0173395 (2017).
  • Alcock, F., Damen, M. P., Levring, J. & Berks, B. C. In vivo experiments do not support the charge zipper model for Tat translocase assembly. Elife 6, e30127 (2017).
  • Alcock, F. et al. Assembling the tat protein translocase. Elife 5, e20718 (2016).
  • Berks, B. C. The twin-arginine protein translocation pathway. Annual Review of Biochemistry 84, 843–864 (2015).
  • Cléon, F. et al. The TatC component of the twin-arginine protein translocase functions as an obligate oligomer. Mol. Microbiol. 98, 111–129 (2015).
  • Grabarczyk, D. B. et al. Structural basis for specificity and promiscuity in a carrier protein/enzyme system from the sulfur cycle. Proc. Natl. Acad. Sci. U. S. A. 112, E7166–E7175 (2015).
  • Grabarczyk, D. B. et al. Mechanism of Thiosulfate Oxidation in the SoxA Family of Cysteine-ligated Cytochromes. J. Biol. Chem. 290, 9209–9221 (2015).
  • Rodriguez, F. et al. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. J. Biol. Chem. 289, 30889–30899 (2014).
  • Yong, S. C. et al. A complex iron-calcium cofactor catalyzing phosphotransfer chemistry. Science (80-. ). 345, 1170–1173 (2014).
  • Rodriguez, F. et al. Structural model for the protein-translocating element of the twin-arginine transport system. Proc. Natl. Acad. Sci. 110, E1092–E1101 (2013).
  • Alcock, F. et al. Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. Proc. Natl. Acad. Sci. U. S. A. 110, E3650-9 (2013).
  • Rollauer, S. E. et al. Structure of the TatC core of the twin-arginine protein transport system. Nature 492, 210–214 (2012).
  • Bradley, J. M. et al. Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX. J. Biol. Chem. 287, 40350–40359 (2012).
  • Kneuper, H. et al. Molecular dissection of TatC defines critical regions essential for protein transport and a TatB-TatC contact site. Mol. Microbiol. 85, 945–961 (2012).
  • Stoffels, L., Krehenbrink, M., Berks, B. C. & Unden, G. Thiosulfate reduction in salmonella enterica is driven by the proton motive force. J. Bacteriol. 194, 475–485 (2012).
  • Fritsch, M. J., Krehenbrink, M., Tarry, M. J., Berks, B. C. & Palmer, T. Processing by rhomboid protease is required for Providencia stuartii TatA to interact with TatC and to form functional homooligomeric complexes. Mol. Microbiol. 84, 1108–1123 (2012).
  • Palmer, T. & Berks, B. C. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10, 483–496 (2012).
  • Maldonado, B., Buchanan, G., Müller, M., Berks, B. C. & Palmer, T. Genetic evidence for a TatC dimer at the core of the Escherichia coli twin arginine (Tat) protein translocase. J. Mol. Microbiol. Biotechnol. 20, 168–175 (2011).
  • Maldonado, B. et al. Characterisation of the membrane-extrinsic domain of the TatB component of the twin arginine protein translocase. FEBS Lett. 585, 478–484 (2011).